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ABSTRACT

|
This paper deals with observability properties of realizations of

linear response maps defined over commutative rings. A characterizetion é
is given for those maps which admit realizations which are simultaneously

reachable and observable in a strong sense.
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INTRODUCTION

Observability is one of the central concepts of system theory (see
KAIMAN, ARBIB and FAIB [1909]). We study here some aspects of
observability in linear dynamical systems defined over commutative
rings. For motivation and for a survey of results on systems over
rings, the reader is referred to SONTAG [197/]; for an elementary
mathematical introduction the reader is referred to EILENBERG [197k,
Chapter XVI!.

ILet R denote a commutative ring.

Consider a linear system

x(t + 1) = Fx(t) + Gu(t),

wlt) = Hx(t), & =0, 01, 2. ... |

where x(t) is in X = R" (n-vectors over R), u(t) is an m-vector

and y(t) is a p-vector for t =0, 1, 2. ... , and where F, G, H

are matrices of the appropriate sizes.

Intuitively, observability means the existence of a procedure for
determining the state x(0) of & from data obtained by experiments of
the type: "apply an input sequence u(0), u(1), u(2). ... beginning in
state x(0) and observe the corresponding output sequence y(0), y(1),
y(2) ...". Since ¥ 1is a linear system. the effect of nonzero inputs
can be substracted from the output sequence. Thus we may restrict
ourselves to those experiments in which wu(t) = O for all t > 0. Let
Q(x) denote the output sequence Hx, HFx, HFQX. «++ « Then for linear

systems we have the following characterization of

(a) Observability: each state x in X can be uniquely

determined from O(x).

This question was studied in KAIMAN [ 1908, Definition 10.1! for the case
R = field. In this case, (a) is equivalent to the possibility of
determining x via linear data processing schemes. In other words, for

each x' in X' (where X' denotes the set of costates. i.e. the dual
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of the state-space X) there exists an R-linear procedure 7y_, (i.e
= 5

an R-linear map from the set of output sequences into R) such that for
all states x in X,

(*) x'(x) = 7,.(0(x)),

(see KAIMAN [1969, Definition 10.2 and Theorem 10.101). Because of

finite dimensionality, condition (*) can be also expressed as

(b) R-linear observability: for every x' in X', there

exists y PO (Rnp)' such that x' = Tr°Q

~—

: 2 B g v
Here Qn' X =R is given by

The equivalence (2) ¢> (b) breaks down when R 1is an arbitrary ring.
Consider for instance a system over R :=Z with n=p =1, F = 0,
G = arbitrary and H := 2. The system will be observable in the sense of
(2), since the state x can be recovered from the knowledge of the
corresponding output y = Zx. On the other hand, observability in the
sense of (b) does not hold, because division by ¢ cannot be performed
when operating over Z. Similar differences among (2) and (b) when
R - ring arise in continuous-time situations (for example. for delay-

differential systems).

The case R # field is further complicated by the fact that canonical
realizations are not always free, (unless R - principal ideal domain)
i.e.. the state space cannot be described by independent coordinate
functions. We take the position that some notion of coordinate system is
needed in order for the above problems to be manageable. Therefore, we

shall only consider response maps for which the canonical state space

admite (nonindependent) coordinates (projective modules).
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Condition (b) is related tosuch important system-theoretic questions
as the existence of observers with arbitrary dynamics and the problem of
regulation. Accordingly, we propose to study in this paper conditions

under which the canonical realization of a given response map is

observable in the (strong) sense of (b). For integral domains, this

is achieved in Theorem (2.1), which gives a necegsary and sufficient
condition states in elementary terms. For rings with zero-divisors,

a similar condition is given in (3.1). The proofs rely heavily on known
realization results on systems over rings together with some results from
commutative algebra and an apparently new criterion for the projectivity

of the column-module of a matrix.

The results of this paper have applications in the theory of regulation
of delay-differentinl systems; we illustrate how this application comes
about through an example, a more complete discussion having been already
given by the author in SONTAG[ 1976, Section 3.D!. Consider a delay-differential

system with equations

,(8) = 2x (£ - 1) + x (¢) + x,(t) + u(t),

1 1
(a) %,(t) = x,(t - 1) - 3x,(t - 5) + u(t - 1),
y(£) = %, (8) - x,(t - 1).

If we introduce the delay operator o defined by
glx)l(t) == %(t = 1),

we can rewrite (a) in matrix form as

x.| [20 41 1] [x 11
1. N 1 3 |u
X, o - x2 T __I




We see then that (a) can be expressed in a form very similar to
the ordinary finite-dimensional constant linear systems of control
theory, the only difference being that the matrices (F, G, H) now

_ % have polynomial instead of real valued entries. When all the delays
1 ai. bj. Ck in (¥) are integral multiples of a fixed delay A, we
' can apply the same procedure as above, taking now for ¢ a shift of

) seconds. If, instead. the delays in (*) are not commensurable, we

need to define a finite set of delay operators o o and then

ILERREE
consider systems whose matrices have entries in the ringof polynomials

in oy, ..., 0, denoted by Rloy, ..., o.].

1 r

A Tuenbergser observer, or ieterministic Kalman filter, can be
eonstructed for (%) formally as in the case of finite-dimensional linear
systems, with arbitrary convergence rates, precisely when the system (*)
(with  R-polynomial ring) is observable in the sense of (b). Given a
delay-differential system described in the input/output sense, the standard
construction of a repulator (observer+state-feediback) is possible if and
only if the canonieal realization (in the ring-sense) is observable in the
sense of (b). In the case of finite-dimensional systems such a property
ie always true; in the delay-differential case a 1ost natural necessary
and sufficient condition is given by (2.1) applied to R=polynomial ring.
It is interesting to remark that the notions of projective and free module
coincide in this case (Serre's conjecture/Quillen's theorem), so the
notion of a "split realization" is very strong here: the application
of (2.1) to delay-differential systems results then in a result of high

intuitive significance whose proof depends on very sophisticated algebra.

ACKNOWIEDGFMENT. The author wishes to thank Dr. E. KAMEN t
for bringing the problem of existence of observers to the author's

attention, thus motivating the research reported here and Professor R. E. :

KAIMAN for numerous suggestions concerning the preparation of this paper.
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\ 1. DEFINITIONS AND NOTATIONAL CONVENTIONS

: We shall assume throughout this paper that R is a (commutative)

; Noetherian ring, i.e., every ideal of R is finitely generated. For
commutative rings this is a very weak restriction and it simplifies the
exposition considerably.

We shall use the notations:

Rn :—- free R-module in n generators, i.e., the set of
(column) n-vectors;
n¥m : : . :
R t= set of n X m matrices with entries in R;
X := tensor product of R-modules;
the set of maximal ideals of R;
Ty *= the canonical map R +R/M, for any M ¢ 0
s 9 nm A
7 S - - e o , then Ik(C) := ideal generated by the set of
all k X k minors of C. If @: R-S is a ring homomorphism, then
o = (Qcij) S
n

We shall identify an R-linear map R R with its matrix when
the standard bases are used for Rn and APm.

(1.1) DEFINITION. Let M be an R-module. The dunl M' of M is

the R-module consisting of all R-linear maps from M into R (with

the pointwise operations). For an R-module homomorphism f: M >N

the transpose f': N' .M' is the R-linear map given by f'(u) := uef .
for all w: N - R,

We chall work with the following definition of a projective module
(cee ROURBAKI [Algebre, IT...0, Prop. 123 Algdbre Commutative, IT1.5.7,
Theo. 21):

(1.2) DEFINITION. P 1is a (finitely generated) projective R-module
iff there exist elements v1. viegy vn iﬂ P and linear forms vi. ey v;
E in P' such thrt for every v in P,
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n
S ' g
Vo=l vi(v) %o

P has rank s iff, for every M in 0, the vector spaces P © (R/M)

have equal dimension s. (Otherwise the rank is not defined.)

If R 1is an integral domain with quotient field Q, the rank of
P is always defined; it is equal to the Q-dimension of P R Q.

See BOURRBAKI fAlgébre, IT.2.%] for a discussion of these questions.

(1.3) REMARK. Let P be as in (1.2), and suppose that f: P 5N

is an R-homomorphism for which f' is surjective. Then f splits,

i. e. there exists g: N - P such that geof = identity on P. 1Indeed,
since f' is onto there exist u, N =R, L =1, «..5 0, such that

Uiﬂf = v{. It is then enough to define

i
g Uy (k) vy

e(x)

for all = in N.

(1.%) DEFINITIONS. An (m, p)-response map f over R is a

sequence (Al, By wee ) of matrices in RP ™, An (m, p)-system

5 = (X, F. G, H) over R is given by a finitely generated R-module X

and R-module homomorphisms F: X =X, Gt Rm by S , RP. (If clear

from the context, X is not explicitly displayed.) £ is projective

[free, ...] when X is projective [free, ...l; £ has rank n if X
LR it i A ’ —— it

is projective of rank n. Given a response map f. a system <

is a realization of f provided that Ai = HF]_lG for all i. The map

f is realizable if there exists at least one realization of f. The

rank of f 1is the smallest integer amonz the ranks of projective systems

realizing f. Finally, the dual of £ is the (p, m)-system
b L T 1 R PR - 1 L a
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For background concerning these definitions, consult KALMAN, FALR,
and ARBIB [1969), EILENBERG [1974, Chapter XVI| or SONTAG [1976]. The
terminology "input/output map" is sometimes used instead of our

" "
‘.“‘,-.p‘ ynNee man

Given f - (A, A,, ... ), let us define the block matrix

Qs
e A
(1.5) - H =H{E = 2
4411
IAETR e

For each n, the n-th order reachability !resp. observability| map
nm

of £ 1is defined as R : R . X [resp. 9. X R'P1. where
F:‘1 is given, in block form. as
[ n-1
¢ Rie=_ [ G Blrad taaie G
(1.6) B :=[6, ¥ T
and O is given., in bloeck form, as
~n
H
HF
G e :
oy .
HFn-l
Observe that 7 realizes f iff Hn 1= anﬁq for all n.

Assume X can be generated by n elements. We define I to be
reachable | resp. observable, resp. canonical! iff gn is surjective

[resp. 0 is injective, resp. X~ 1is reachable and observablel.
=~
The following is a new

(1.8) DEFINITION. A system @ is split iff the following three

conditions hold:

(1) X is projective,

(ii) » is reachable, and

(iii) »' is reachable.

N T T TP R e e — .
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The response map f splits iff it can be realized by a split system.

The terminology is motivated by the fact th~t O  splits (en £, (1.3))

for a split % with n generators.

It is not difficult to prove that a split system is necessarily

canonical. When R 1is a field, it is clear that canonical = split.

(1.9) REMARK. When Q 1is an overring of R, any input output map f

over R can be naturally seen as an input /output map over Q. This

applies in particular to an integral domain R and its quotient field Q.

More generally, let S be an R-algebraj; if ¥ 1is a system over R then
) § is defined as the system (X®§, F?21,, G 1, HD1,) over S.

If f 1is a response map over R, then f 2 8 1is defined as the

response over S given by fAi X lS}' in other words. by the

sequence A , tA_, ..., where (: R -5 is the map defining the

1 2
algebra structure.

We write f(M), X(M), etc. instead of f & (R/M), X & (RM), etec,
for M in

One of the main reasons for the restriction on R to be Noetherian

is the following important result due to ROUCHALEAU. WYMAN, and KAIMAN [19721:

7]

(1.10) THEORFM. Let R be a Noetherian integral domain, Q it

quotient field. Let f Dbe a response map over R. Suppose that

f 9Q is realizable over Q. Then f is realizable over R.

PROOF. Cee the above reference or the alternative proofs in

EILENBERG [197%, Chapter XVI., Theorem 12.11 and SONTAG 1976, Appendix]. 0
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THE MAIN RESULT
The main result of this paper is:

() THEOREM. Let R be a Noetherian integral domain, Q i

t y
ts |
quotient field, and f a response map over R. Suppose
rank. £ = 1.
Q
Then f splits if and only if In(Ln) = R.
For R = principal-ideal domain, the condition In(gw) = ® means that

the greatest common divisor of all n X n minors of En must be a unit.
Further, over this R projective modules are free. So (2.1) gives a useful

condition for existence of free split realizations over principal-ideal domains.

)

The proof of (2.1) will be delayed until certain general facts are

established.

The next result is useful in studying questions of reachability.

(2.2) PROPOSITION. A

stem X over R is reachable if and only if

for any M in @ the system (M) over R,M is reachable.

PROOF. If = has n generators then each %(M) has dimension

not greater than n. Therefore the problem is to show that

R is surjective iff every BH(M) is surjective.
This is immediate from BOURBAKI [Algeébre Commutative TI.#.%. Prop. 111. O
P oy % sxt ®
(#.%) ORSERVATION. Let C be in R and let n < min {s, t}. Then

C>n for all M in Q. Indeed, this

I (C) =R if and only if rank T
n ) < R/M M
condition is equivalent to the existence, for each M, of a minor of order n
of C which is nonzero in R/M. In other words, for each M there is some
minor of order n of C not in M. This can only happen when the ideal

I“(C) is not contained in any maximal ideal, i. e., if it is not proper. a |
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(2.l) PROPOSITION. Let R be a commutative ring. Suppose that

o« (X. ¥, G. H) is a canonical projective realization of f of

rank n. The following statements are then equivalent:

(a) £ splits.

(b) T is a split system.

(¢) =' is reachable.

(d) ='(M) is reachable for every M in Q.

(e) =(M)' 4is reachable for every M in

(f) (M) is observable for every M in

(g) =(M) 4is canonical for every M in 0,

(h) rankp . f(M) = n for every M in 0.

R/M —_—
(1) gn(m) = M4l ~has rank n for every M in
(3) E AR J =R
n'~n
(k) O (M) has rank n for every M in
f ¥ is free, the above statements are also equivalent to:

(0) In(g”) = R.

PROOF. First observe that since each R/M 1is a field, the :
equivalence between (e). (f) and (k). and the equivalence among (g). (h) |
and (i) are all well-known facts (see for instance KALMAN, ARBIB, and
FALB [10F9Q, Chapter 10!). Observation (2.%) proves thest (i) is equivalent
to (i) and that (k) is equivalent to (£). Therefore it will be enough ‘
to prove that equivalence of (a), (b), (e¢), (d). (e) and the equivalence i
ofn e () |

h

(a) equivalent to (b). Any split realization % of  F 1z

& .
in particular canonical, By the unioueness of canonica2l realizations
(see EILENBERG [197h, p. h191), = - Fl. Therefore 5 1is also a }

split system. |

e ————i i Sl L ST L
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(b) equivalent to (¢). Trivial, because = is by hypothesis

already reachable and projective.
¥ (c) equivalent to (d). Clear from (:.:).

(d) equivalent to (e). Consider M in . Tt follows from
the discussion in ROURBAKI [Aleebre, IT.7.l! that the state-space P(M)'
can be canonically identified with P'(M) (here P - projective is
essential!). Under this identification, F'(M) [resp. G'(M)., H'(M)]
corresponds to F(M)' f[resp. G(M)'. H(M)']. Therefore ='(M) is
canonically isomorphic to »(M)'. The equivalence is now clear.

(f) equivalent to (g). By hypothesis  1is renachable. So by
(2.2) all the R/M-systems (M) are reach-ble. a

We may now give the

PROOF of (2.1). Assume that f splits. Then the equivalence

of (a) and (j) in (2.4) shows that Iq(ﬁn) .

e a a4 s - as
Conversely, suppose that In(gn\ R, ds6. 7L£% has rank n
for all M. To prove that f splits, it is enough to show that (2.L)
can be applied. Tn other words, it must be proved that the canonical

state space X = X. is a (finitely generated) projective R-module of

rank n.

n

Since R 1is Noetherian, f is realizable; see (1.10). Assume
then that ¥ can be generated by s elements. Then X 1is isomorphic

to the R-module generated by the columns of H (ROUCHALEAU (1972,

Section 2.A1; see also SONTAG [1976, Lemma (%.11)1).

P

Fix a maximal ideal M. Denote by R, the localization of R

at M. the local ring consisting of all fractions a/b with a, b in
R and b not in M (see BOURBAKI {Alﬁébvn Commutative T1.%.2, Prop. 51).

Since R, is a flat R-module (see BOURPAKI [Algebre Commutative IT.2.h,

"

Theo. 11) it follows that the canonical state-space of f @ RM is

R SN SR Therefore X is isomorphic to the R-module generated

.

i ¥ (A v A H

by the columns of }  (viewed as a matrix over RM\.
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Since obviously s > n, from the hypothesis on the ranks . of f over
Q and of ”Mﬁn over R/M it follows that H has rank n over Q and
mH has rank n over RM = RM/MRM. The lemma in the APPENDIX can be

M~s
applied over R, (with A = {1} and K, = Q). Therefore X is free.

1
It follows from BOURBAKI [Algébre Commutative, II.5.%, Theo. 2]

that X is projective of rank n. 0

(Q.F) REMARK. 1In many cases of interest the realizations whose existence
is claimed (under the stated hypothesis) can in fact be constructed
explicitly. For principal-ideal domains, for example, it is only

necessary to apply the usual realization procedure generalizing "SILVERMAN's
formulas" (see ROUCHALEAU and SONTAG [19761); the resulting canonical

system will be necessarily split. For loecal rings, it is only necessary

to find a submatrix C of the Hankel matrix such that 7C is invertible;
"STLVERMAN's formulas" can be applied over the field © and the realization

obtained will necessarily be over R.

When f = (al, a., ... ) 1is a scalar response map and the formal power
series ) aiz'i is expressed over R as p/q, where p, q € Riz], we
may state a condition directly in terms of the
"transfer function” p/q. Given two polynomials p. @ over R we denote
by p(p. a) the resultant of p and q (see LANG [1965, p. 1351). This
is an element of R. Recall BOURBAKI [Alecébre Commutative, V.1.21) that

an integral domain R 1is integrally closed iff for any equation

(where 211 a, ere in R} every solution in @ 1is necessarily in R.

(For instance, unique factorization domains are integrally closed.)
A scalar realizable response map f over an integrally closed
domain R admits a transfer function p/q, where a is in fact
the minimal polynomial of f over Q (see EILENBERG [1974, Chapter XVI
Section 121, ROUCHALEAU and SONTAG [1974, Lemma (1.2)]). We call such a

transfer function irreducible. We can then state

R i T




T
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(2.6) PROPOSITION. Let R be an integrally closed integral domain.

Let f be a (1, 1)-response map over R, with irreducible transfer

function p/q. Then f splits iff p(p, q) is a unit.

PROOF. The condition p(p, @) = unit is equivalent to the
following requirement: n(p(M), a(M)) # O for all M in 0, where
p(M), a(M) are obtained by reducing modulo M the coefficients of
. q. But p(p(M). q(M)) = O precisely when p(M). q(M) have a
common factor, i. e. when rank f(M) < n. The result follows then

immediately from (2.1). 0

R — 2 T— ol
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5. THE CASE OF REDUCED RINGS

Recall that a commutative ring R is reduced when R has no

nilpotent elements. (Example: 710"

is a Noetheri~n reduced ring, let P(R) denote the (finite) set of

the integers modulo 10.) If R

minimal prime ideals of R. Let Q(R) denote the set of quotient

fields of the type R/p, p in P(R).

The following result generalizes (2.1) to the case of reduced rings:

3.1 THEOREM. Let R be a Noetherian reduced ring. Then the re-

sponse map f splits if and only if:

(i) the numbers raﬂkQ (f 2Q) are equal for 21l Q in Q(R),

and

(ii) for every M in O, rank EH(M) = n, where n is the

R/M
common value of rank. (f® Q).

Q

: SKETCH of PROOF. ["if"] [Let § := (R/py) X...x (R/p ), where
Py ...+ P, are the elements of P(R). Since each R/Pi is a
Noetherian integral domain, each . f © (R/pi) is realizable and hence f
is realizable as a map over S. But S8 1is a finite extension of R,

so f 1is realizable over R. Therefore the canonical state-space

X = Xf is a finitely generated R-module. As in (2.1)., it must be

proved that X 1is projective of rank n.

Let M be in 0. Then R, is also reduced (ROURPAKI [Algebre
Commutative, II.2.°7, Prop. 17]). The minimal ideals of RM correspond
to those minimal ideals of R which are contained in M and Q(RM) is
a subset of Q(R) (see BOURBAKI [Algebre Commutative, II.3.1, Prop. 3).
Therefore the result in the APPENDIX can be again applied, where the

K, are the elements of Q(RM).

[Yonly if"] This is similar to the proof of (2.1). n

EDSSPLIT 147
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APPENDIX. A CRITERION FOR FREENESS.

LEMMA. Let R be a (commutative) local ring and write

\ 7: R -»k for the canonicrl map into the residue field k ‘of R. Suppose

there is given a family of fields {KX’ A © A} and a family of ring

homomorphisms @,: R - K, such that Mker @, = 0. Let V be in -
A T VAN P

and let X be the R-module generated by the columns of

V. Then a sufficient condition for X to be a free module is °

rank,, (V) - rank, (V)
K\ A

FROOF, By definition of rank over the field k., 7V has an n X n
nonsingular submatrix W, where W is an n X n submatrix of V. Let
® :=det W. Thus 75 # 0, i. e. & is not in the unique maximal ideal of
R. By PROURBAKI [Algdbre Commutative II.3.1, Proposition 1l, & dis a unit

in R. Iek w seey W denote those columns of V which belong to W.

l)
(learly the vectors (w

& = unit.

LD wnT are R-linearly independent, because

The proof now reduces to showing that the vectors Wie eee W

generate XK. 1In fact. let v be any other column of V. Let

o denote the row indices of the subtmatrix W. Let

LT St

B, := det (a;ﬁ) where

B =W . EF 38,
1] Nysd
' 2Ry iy
(‘i
(wii is the 1i-th entry of wi and vi is the i-th entry of v).

(‘ongider
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n

= 5 - o [3) E o
Eom D g Blig 8 0

Then, @&x = (dKS)(mxv) =2, (Qxﬁﬂ)(aan) for each A in A. Since

is 2 unit in R, it follows that af, which is equal to det (OAW)'

is nonzero in K . By definition of rank over a field, o,v is a unique
K\-linear combination of the ﬂch, and by Cramer's rule this combination
has the coefficients 0183/0%5. Therefore ij = 0.

' Hence x 1is in ker «, for each ». Since  'ker t, =0,
A\
it follows that x = 0. Therefore v =7 (& /8w . ]
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